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Abstract

We propose a method for factorizing scenes into geom-
etry, material, and lighting from a given RGB Images with
known camera poses. We represent the geometry by explicit
3D Mesh converted from neural Signed Distance Function
(SDF) with Marching Cubes algorithm [6]. We use Mit-
suba2 [10] path tracer to determine the surface intersection
points and the visibility of each light source in the scene
w.r.t. each intersection. We use MLPs to predict BRDF and
environment illumination. Particularly, the BRDF module
contains one MLP for albedo estimation, and one MLP for
BRDF latent code prediction. A pretrained latent space,
which is pretrained with MERL [7] dataset, takes the BRDF
latent code and predicts the material specularity. The MLPs
are optimized with one single re-rendering loss. This factor-
ization enables free-viewpoint relighting and material edit-
ing. Qualitative and quantitative experiments show that our
model outperforms previous methods and achieves state-of-
the-art results.

1. Introduction

Factorizing a scene into geometry, material and light-
ing from given input images with known poses has been
a challenging problem in computer graphics. Such factor-
ization for a scene facilitates re-rendering the scene while
varying its illumination and material properties. In this
work we propose a solution for decomposing scenes un-
der one unknown illumination. The key idea is to lever-
age the advantages of implicit SDF geometry representa-
tion and explicit mesh representation. The implicit SDFs
are ideal for the geometry reconstruction due of the ease
of back-propagation, while the explicit meshes have huge
advantages of accuracy and efficiency in surface intersec-

tion point calculation. We first reconstruct the geometry
with pretrained SDF from NeuS [14], then transform the
SDF into a mesh by Marching Cube algorithm. After that,
we can analyse surface intersection points and light visi-
bility of the light sources in the scene, which have a huge
benefits for rendering proper cast shadows. The material
properties are represented as Bidirectional Reflectance Dis-
tribution Function (BRDF), which is optimized with MLPs
and a pretrained BRDF prior learned from real world data.
We applied a novel neural environment map for estimating
the lighting. Our model is optimized using one single re-
rendering loss and smoothness constrains. We obtain the
state-of-the-art results qualitatively and quantitatively. Our
pipeline is visualized in Figure 1.

To summarize, our main contribution are

• A method that performs neural factorization for scenes
given multi-view images with known camera poses un-
der one unknown illumination.

• Performing detailed 3D geometry reconstruction with
implicit SDF and physic-based surface intersections
and light visibility estimation with explicit mesh.

• Reducing the computation time for the visibility esti-
mation from 150+ hours (our baseline) to 5 minutes.

• Presenting a novel upsampling technique during the
inference that improves the relighting results without
additional training.

• Achieving the state-of-the-art results.

2. Related Work
Novel View Synthesis In the recent few years, utilizing
neural fields to represent 3D scenes has gained a lot of at-
tention. In NeRF [8], the scene is represented by MLPs that



map 3D coordinates and viewing directions to volume den-
sity and radiance. The view is rendered by sampling points
on each camera ray to the scene and feeding these points
with viewing direction to the MLPs which are optimized
to minimize the re-rendering loss between the ground truth
image and the rendered image which is rendered by volume
rendering. Another similar approach to NeRF is NeuS [14]
which represents the geometry as neural SDFs and uses a
novel sphere tracing to locate the surface. Those methods
are not able to factorize the scene into explicit components
like material or lighting. In our work, we can decompose
the scene represented by neural SDFs and ensures a plausi-
ble relighting and material editing.

Neural Factorization and Inverse Rendering Despite
that neural fields have amazing performance in novel view
synthesis, it is not possible to factorize the represented
scenes as the neural fields only represents specific proper-
ties like volume density, radiance and SDF. A work that
builds on Nerf to solve this problem is NeRFactor [15]
which factorizes scenes represented by NeRF. The scene
geometry and normals are extracted from NeRF’s density
volume which is noisy in contrary to the Neural SDFs that
we use. The other properties are represented by MLPs that
are optimized by re-rendering loss in addition to optimiz-
ing the 2D environment map that represents scene illumi-
nation. In our work we represent the light using a neural
representation. Other similar work NeRD [3] optimizes the
neural fields for novel view synthesis and factorization si-
multaneously. Our approach is different than their work as
our representation for BRDF is neural representation while
they use analytical BRDF. As the problem of factorization
is highly unconstrained, other works tried to have some as-
sumptions to make the optimization easier. For example
NeRV [13] has assumed multiple known illumination, while
in our work we assume one unknown illumination.

Normalizing Flows For physically based rendering, we
need to model a BRDF that conserves energy which means
that for every incoming light direction integration of BRDF
over the hemisphere of reflected light directions should be
less than or equal to one. This constraint is not straightfor-
ward to satisfy with neural BRDF approaches. To achieve
that, Chen et al. [4] proposes to use the idea of Normaliz-
ing Flows [11] to train an MLP representing BRDF where
the integration mentioned above satisfies the energy con-
servation property. In our work, we decided to implement
a conditional variant of Real NVP [5] similar to the work
done by Ardizzone et al. [1]. To condition Real NVP, we
input condition variables to the scale and shift MLPs.

Figure 1. An overview of our pipeline. Given input RGB images
with known camera poses. We apply NeuS [14] as our geome-
try reconstruction and extract a 3D Mesh from the trained neural
SDF with marching cubes. Then Light visibility, surface positions
and normals are calculated using Mitsuba2 [10] path tracer. Then
MLPs are queried to predict reflectance, albedo and light intensity.
Then the scene is rendered with the rendering equation

3. Method
3.1. Assumption

In this section we will state the assumptions that we have
on the scenes that our method factorizes.

• We assume that the scene consists of only hard sur-
faces and non-transparent materials. For example, ma-
terials like glass and smoke won’t be counted.

• We assume a single unknown spatial invariant illumi-
nation.

• We assume single-bounce reflections. Our model con-
siders only direct illumination.

3.2. Shape

We first applied NeuS [14] to reconstruct the scene ge-
ometry. NeuS takes multi-view images and camera poses as
input and provides a high-quality geometry reconstruction
as implicit SDF. We then transform the SDF into explicit
mesh using Marching Cube algorithm. A mesh representa-
tion enables an efficient and accurate estimation of surface
intersection points and light visibility.

Surface Intersection Points and Normals In order to
calculate the surface positions xsurf and the normals nxsurf

at these positions of the scene, we apply Mitsuba2 path
tracer to shoot rays from the camera to the 3D mesh and
calculate their first intersection. We adopt the normal of the



mesh where the intersection is found as the surface normal
of the intersection point.

Light Visibility After determining surface positions, we
use Mitsuba2 to calculate light visibility lv(xsurf , ωin) for
every surface intersections and uniformly sampled incom-
ing light directions ωin. The visibility is a binary value that
determines whether a ray shooting from the light source in
ωin direction has intersection with the mesh.

3.3. Material

We represent BRDF by decomposing it into diffuse and
non-diffuse parts following the approach used in NeRFactor
by Zhang et al. [15]. They model BRDF at each surface
location xsurf, representing albedo and specular component
separately:

R(xsurf,ωi,ωo) =
a(xsurf)

π
+ fr (xsurf,ωi,ωo) , (1)

where a is albedo and fr is spatially-varying specular
BRDF. The incoming and outgoing directions are denoted
by ωi and ωo, respectively. Our whole BRDF pipeline is
depicted in Figure 2.

Figure 2. Our BRDF pipeline: Our specular BRDF MLP is pre-
trained on the MERL [7] dataset to learn a latent space of real
materials. During joint optimization, we optimize latent codes us-
ing our BRDF Identity MLP. For the diffuse component of BRDF
we optimize an Albedo MLP. To get the final reflectance, we sum
up the outputs from Albedo MLP with specular BRDF MLP.

Albedo The albedo a is represented as an MLP fa :
xsurf 7→ a. For each surface location xsurf, this MLP es-
timates the albedo. It is optimized jointly with other com-
ponents using re-rendering loss and smoothness prior which
is formulated as:

ℓa = λa

∑
xsurf

1

3

∥∥fa(xsurf)− fa(xsurf + ϵ)
∥∥
1
, (2)

where λa is a hyperparameter set to 0.05 and ϵ is a ran-
dom 3D perturbation from xsurf sampled from a zero-mean
Gaussian with 0.01 standard deviation.

Specularity The specular part of BRDF is first pre-
trained on a real-world BRDF dataset called MERL [7] to
learn a latent space of real-world materials. The MERL
dataset provides RGB reflectance values for isotropic ma-
terials. Therefore the incoming and outgoing directions are
parameterized by Rusinkiewicz coordinates [12] with 3 de-
grees of freedom (ϕd, θh, θd). We denote the latent code
with zBRDF which is 3-dimensional. During pre-training, we
train an MLP whose inputs are the latent code concatenated
with the Rusinkiewicz coordinates, that outputs an achro-
matic reflectance r:

f ′
r :

(
zBRDF, (ϕd, θh, θd)

)
7→ r , (3)

where f ′
r denotes our re-parameterization of fr. We opti-

mize both the latent codes and the weights of this MLP dur-
ing pre-training. The loss is log mean squared error between
the prediction and the ground-truth achromatic reflectance
values obtained from MERL dataset. The latent codes are
initialized with zero-mean Gaussian with a standard devia-
tion of 0.01.

During the joint optimization, this MLP is frozen and
zBRDF are predicted using another MLP which we call
BRDF identity MLP:

fz : xsurf 7→ zBRDF (4)

The BRDF identity MLP is optimized from scratch during
the joint optimization using the re-rendering loss and the
spatial smoothness loss as in Equation 2:

ℓz = λz

∑
xsurf

∥∥fz(xsurf)− fz(xsurf + ϵ)
∥∥
1

dim(zBRDF)
, (5)

where λz is a hyperparameter set to 0.01. Our final BRDF
is:

R(xsurf,ωi,ωo) =
fa(xsurf)

π
+ f ′

r

(
fz(xsurf), ϕd, θh, θd

)
.

(6)

3.4. Lighting

We represent the incoming light intensity from direction
ωin by an Environment Map MLP:

fl : ωin 7→ lωin
(7)

where lωin is the light intensity from direction ωin.
In our model, we choose 16x32 fixed light incoming di-

rection in order to compare with our baseline which repre-
sents the lighting as a latitude-longitude HDR light probe
image with a fixed size of 16x32.



3.5. Rendering

Given surface intersections, surface normals, light vis-
ibility, material BRDF, and environment lighting, we can
now calculate the outgoing radiance at position xsurf from
the viewing direction ωo using the rendering equation.

Lo(xsurf , wo) (8)

=

∫
Ω

R(xsurf , win, wo)fl(win)(win · nxsurf
)dwin

=
∑
wi

R(xsurf , wi, wo)fl(wi)(wi · nxsurf
)fv(xsurf , wi)∆wi

where the visibility fv(xsurf , wi) is a binary mask.
The final re-rendering loss ℓrgb is the mean squared error

between the rendered image and the ground truth image.
Our full loss is defined as ℓrgb + ℓa + ℓz.

4. Experiments
4.1. Experimental Settings

Dataset We evaluate our model with the NeRFactor data
set. It contains four synthetic scenes rendered by Blender.
Each scene is provided with 200 views for the training, 8
views for the validation, and 100 views for the inference.
It provides for each view its ground truth normal, albedo,
environment maps and rendered images under multiple il-
lumination. We use only rendered images under one illumi-
nation for the training and validation, and use images un-
der other illumination for evaluating the relighting perfor-
mance.

Implementation Details During the preprocessing, we
train NeuS for 500k iterations (512 rays per batch) for 20
hours on a single NVIDIA RTX3070Ti GPU. We transform
the NeuS SDF result to mesh with a marching cube resolu-
tion of 1024. The calculation of surface intersection points
and light visibility takes only several minutes.

We adopt the same architecture of albedo and BRDF z
estimation MLPs from NeRFactor, each of which contains
four layers, each with 128 hidden units. The neural environ-
ment map MLP has a similar architecture but has a value of
one added to the MLP output to ensure that the initial il-
lumination values are larger than zero. We use positional
encoding for the input coordinates.

In the optimization of the MLPs, we sample 5x1024
shuffled rays every batch from the same camera pose. The
albedo smoothness weight is set to 0.05 and the BRDF
smoothness weight is set to 0.01. The optimization takes
1.5 hours for 100 epochs on a RTX3070Ti.

4.2. Factorization of Shape, Material, and Lighting

In this experiment, we show how our model factorizes
scenes into geometry, diffuse and specular reflectance, and
illumination.
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Figure 3. Factorization of Shape, Material, and Lighting. Our
model performs detailed normal reconstruction, physical-based
light visibility analysis, clean albedo estimation with minimal
shadows, and reasonable material prediction. Although the esti-
mated environment maps differ from the ground truth, the position
of the dominant light sources are determined properly in HDR for-
mat.

As shown in Figure 3, our model synthesizes novel view
images by factorizing in high-quality normal, reflectance
and environment map. Our model reconstructs a precise ge-
ometry using NeuS. In the hot dog scene, the roughness of
the bun and the smoothness of the plate are accurately recre-
ated. Our model is capible of calculating physic-based light
visibility by applying path tracing on explicit 3D mesh. For
the material properties, our model manages to analyze dis-
tinguished diffuse reflectance (albedo) and reasonable spec-
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Figure 4. High-quality Free-viewpoint Relighting. Our model enables a free-viewpoint image synthesis under arbitrary environment
illumination including the challenging OLAT illumination. Our synthesized images closely match to the ground truth with precise colors
and realistic cast shadows.

ular reflectance. The specular reflectance is illustrated by
the visualization of the latent code (BRDF z), meaning dif-
ferent color indicates different specular effects.

The small images in the upper right corner of Ground
Truth or Novel View in Figure 3 represent the ground truth
or predicted environment maps. Our model successfully an-
alyzes the position of the dominant light source in the HDR
space. It is hard to recognize in our figure because I) we vi-
sualize the environment maps in LDR space, therefore the
intensity of dominant light sources are truncated, II) our
model predicts the non-dominant light sources ”brighter”
than the ground truth due to the one-bounce reflection as-
sumption and not shiny material, III) objects are only ob-
served from the upper hemisphere so the bottom half of the
environment map can not be estimated properly.

Note that the albedo and environment map are calibrated
as in previous works [2, 15]. Each RGB channel of the
predicted albedo is scaled by a global scalar generated by
minimizing the mean squared error between the raw pre-
dicted albedo and the ground truth albedo of the first view.
Thus, we can disambiguate the relative light intensity of re-
flectance and environment illumination. The visualization
of the environment map is scaled by the same scalar.

4.3. Free-Viewpoint Relighting

Since our model explicitly decomposes the shape, mate-
rial and lighting of the scene, a free-viewpoint relighting is
enabled by replacing the predicted environemnt map with

new illumination. Particularly, we test our model under one
point light on at a time (OLAT) illumination. The OLAT
relighting is an extreme lighting situation that aids in geom-
etry and material estimating artifact identification.

In Figure 4, we demonstrate relighting results under
two normal illumination and one OLAT illumination. Our
model achieves exceptional performance in all lighting con-
ditions. In hot dog and lego scene, our model predicts ac-
curate color, exact soft shadows under new environment
with ambient illumination, and realistic hard shadows with
a clean edge under OLAT conditions.

In drums scene, the diffuse color and shadows are esti-
mated correctly, but the transparent and anisotropic reflec-
tion are failed to be synthesized. It is anticipated because
I) NeuS assumes hard and nontransparent surface, II) our
pretrained specularity module is trained with nontranspar-
ent isotropic MERL data.

4.4. Comparison

Baseline We compare our model with the state-of-the-art
neural factorization model - NeRFactor [15]. NeRFactor
extracts surface intersection points and light visibility by
accumulating transmittance from a pretrained neural radi-
ance Field (NeRF) [8]. The surface normal is calculated
by taking the derivative of NeRF’s σ-volume w.r.t. x. The
light visibility and surface normal are further smoothed with
MLPs. For the lighting estimation, NeRFactor adopts an
HDR light probes with a fix size of 16x32.
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Figure 5. Comparison against NeRFactor [15]. Our model can
estimate more detailed geometry, more realistic hard shadows with
sharp boundaries, more reasonable soft shadows, and more precise
color and brightness in relighting.

Relighting Results Comparison Table 1 shows a quanti-
tative comparison of albedo estimation, novel view synthe-
sis, and relighting results. Our model outperforms NeRFac-
tor in all aspects.

A qualitative comparison of relighting results is shown

Albedo Novel View Synthesis Relighting

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
NeRFactor 22.273 0.907 0.106 21.217 0.867 0.118 21.794 0.852 0.119

Ours 23.771 0.914 0.099 26.874 0.905 0.074 23.366 0.884 0.087

Table 1. Quantitative Comparison. The metrics are the mean
value (each value is calculated between one predicted image and
the corresponding ground truth pairwise) of all four synthetic
scenes (hotdog, ficus, lego, and drums) over 200 test views. We re-
light the scenes under 8 novel lighting conditions (without OLAT,
since the data set does not provide enough ground truth OLAT re-
sults for test split). The background color of NeRFactor results
and the ground truths are set to black.

Novel View Synthesis Relighting

Exp. NEM Smooth. Upsamp. PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
I ✓ 33.274 0.951 0.067 25.597 0.919 0.095
II ✓ 32.844 0.951 0.065 26.213 0.924 0.093
III ✓ ✓ 32.725 0.950 0.068 26.022 0.923 0.093

Ours ✓ ✓ ✓ - - - 26.319 0.927 0.085

Table 2. Ablation Studies. The metrics are evaluate on hotdog
scene over 8 uniformly sampled validation views. The relighting
metric is averaged over 8 novel lighting conditions. Each met-
ric’s top three values are highlighted in red, orange, and yellow,
respectively. NEM stands for neural environment map, Smooth.
stands for albedo and BRDF smoothness, and Upsamp. stands for
upsampling during inference.

in Figure 5. We can observe that the details in our synthetic
images are of outstanding grade. In lego scene, we can iden-
tify each stud in our prediction, however in NeRFactor, the
studs are oversmoothed. Besides, our model can better an-
ticipate shadows. Under OLAT conditions, we can observe
realistic hard shadows with clear boundaries, but NeRFac-
tor’s shadows have artifacts and fuzzy edges. Finally, our
relighting results are closer to the ground truth with a more
precise color and brightness.

Computation Time Comparison Our model calculates
light visibility thousands of times faster than NeRFactor.
NeRFactor requires more than 150 hours for computing the
light visibility for 308 views, with 512 point light sources
for each. In our model, it just takes five minutes. The rea-
son is that NeRFactor must march points along a ray and
integrate their sigma-volume, which is computationally ex-
pensive, whereas our model leverages the high speed of path
tracing.

4.5. Ablation Studies

Smoothness By comparing Exp.I and Exp.III in Table 2
we can infer that, while limiting the performance of novel
view synthesis, smoothness enhances the final relighting re-
sults. The albedo smoothness prevents our model from re-
covering an impure albedo with wrong information about
shadows. The BRDF smoothness help to constrain rapid
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Figure 6. Improving Shadow Estimation by Upsampling dur-
ing Inference. Upsampling helps efficiently generate a more real-
istic soft cast shadows without requiring additional training.

material changes.

Neural Environment Map Exp.II and Exp.III in Table 2
show the influence of using neural environment map (NEM)
compared to using light probes with a fixed size. As can be
seen, they achieve similar performance for the relighting.
We believe that NEM has more potential for future work, for
example, for predicting the environment map using Monte
Carlo sampling.

Upsampling During Inference A simple and effective
method for enhancing relighting performance without fur-
ther training is to sample more light sources in the new sur-
roundings. It is only enabled when a high-speed visibility
calculation is performed. Table 2 shows that the upsampling
can marginally enhance the relighting results. In our experi-
ment, we sample 2048 light sources from a test light probes
with a size of 512. We assume that all point light sources
are surface light sources and sample four rays uniformly
around each point light source. It involves recalculating the
visibility, but as the visibility calculation takes less than 1.5
seconds per view for 2048 light sources, this is not an issue.
The upsampling help our model to generate soft shadows as
shown in Figure 6.

Normalizing Flows BRDF Model Physically based ren-
dering requires a BRDF model that conserves energy:

∀ωi,

∫
Ω

fr (ωi, ωo) cos θodωo ≤ 1, (9)

where ωi is the incoming light direction, ωo is the view di-
rection and Ω is the unit hemisphere around the surface nor-
mal. However, representing BRDF directly with an MLP
does not ensure this constraint. To incorporate this induc-
tive bias into our BRDF model, we experimented with Nor-
malizing Flows [11].

The main idea of Normalizing Flows is to model a com-
plex distribution by applying a transformation to a simple
distribution, e.g. a uniform or normal distribution. The
change of variables formula from probability theory ensures
that the transformed random variable has a well-defined
probability density if the transformation is invertible and
both the transformation and its inverse is differentiable [11].
Normalizing Flows methods differ by the way they model
this transformation. One such example is the Real NVP
method [5], where the transformation is simply defined as
the following:

y1:d = x1:d

yd+1:D = xd+1:D ⊙ exp (s (x1:d)) + t (x1:d) ,
(10)

where x is a D dimensional input, y is a D dimensional
output, s and t are functions from Rd → RD−d, ⊙ is the
element-wise product. ”s” stands for scale and ”t” stands
for translation. These functions are represented by MLPs.

To apply Real NVP for energy conserving BRDF mod-
elling, we need to condition it to the outgoing direction as
we need the integral in Equation 9 to satisfy the constraint.
To achieve that we simply input the conditioning variable
to the scale and translation networks. We end up with the
following transformation:

y1:d = x1:d

yd+1:D = xd+1:D ⊙ exp (s (x1:d, c)) + t (x1:d, c) ,
(11)

where c is the conditioning variable.
Another issue is that the incoming and outgoing di-

rections are coupled together as they are represented by
Rusinkiewicz coordinates by the MERL dataset [7], but
we need to separate them since we condition our Normal-
izing Flow network on the outgoing direction. Therefore
we first transform the Rusinkiewicz coordinates (ϕd, θh, θd)
into spherical coordinates (ϕi, θi, ϕo, θo) using the imple-
mentation by Nielsen et al. [9]. However the materials in
MERL are isotropic so we align the outgoing direction with
the x-axis and eliminate ϕo. We end up with 3 degrees of
freedom: (ϕi, θi, θo). We also need to condition our network
on material latent codes, so we input them to scale and shift
networks. Our final conditional transformation is:

y1:d = x1:d

yd+1:D = xd+1:D ⊙ exp (s (x1:d, θo, zBRDF))

+ t (x1:d, θo, zBRDF) .

(12)

The base distribution is bivariate Gaussian distribu-
tion with an identity covariance matrix. We apply posi-
tional encoding [8] to θo before inputting it to the net-
work. To achieve more complex distribution we stack 16
of this transformation, swapping dimensions of the input
at each step [5]. Our normalizing flow network estimates



Figure 7. Normalizing Flows BRDF model training loss curve:
We observe from this plot that our model cannot fit to the training
data using Normalizing Flow BRDF model.

Figure 8. Normalizing Flows BRDF model validation loss curve:
Our model fails to generalize for the MERL dataset using Normal-
izing Flow BRDF model.

fr (ωi, ωo) cos θo by applying inverse of the transformation
to the incoming direction coordinates. Therefore the loss is
L2-loss between the output of our network and the achro-
matic reflectance obtained from MERL(see Section 3.3)
multiplied by cos θo.

We could not get a successful result from our experi-
ments with our normalizing flow BRDF model as can be
seen in Figure 7. The loss cannot be improved further be-
low 0.2, which is too high considering we use L2-loss. As
expected, our model does not generalize as seen in valida-
tion loss plot depicted in Figure 8.

We also integrated this BRDF model with our method to
get qualitative results. In Figure 9, we observe that we fail to
get different zBRDF for different materials and as a result our
albedo prediction is also not reasonable, since our specular
BRDF cannot generalize.

We conclude from our normalizing flows experiments

Figure 9. Qualitative result from our method using the normalizing
flows BRDF model(Left to right: ground-truth image, rendered
image by our method, albedo, zBRDF).

that our reasons for failure in modelling a normalizing flow
BRDF may be numerical instabilities encountered during
training and the fact that we cannot utilize Rusinkiewicz
coordinates as they make learning specular highlights eas-
ier [12].

5. Future Work
In the future work we will further utilize differentiable

Mitsuba2 path tracer and differentiable marching cubes al-
gorithms to make our optimization end-to-end. Instead of
sampling fix incoming light direction from the environment
map, we will improve the sampling strategy with Monte
Carlo sampling. We will continually explore a physic-based
BRDF model. We expect that they would result in improved
factorization and relighting.

6. Conclusion
We proposed a novel model that factorizes shape, mate-

rial, and lighting of a scene, given multi-view images and
poses under one unknown illumination. The main feature
of our model is the integration of implicit and explicit 3D
geometry representation. We leverage implicit SDFs to re-
construct a precise geometry and explicit meshes to conduct
physic-based surface intersections and light visibility esti-
mates with high efficiency. Thus, our model can recover
plausible shape, reflectance, and environment lighting and
predict convincing free-viewpoint view synthesis under ar-
bitrary illuminations. We demonstrate that our model out-
performs the previous works and achieves the state-of-the-
art results.
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